Indirect pushing based automated micromanipulation of biological cells using optical tweezers

نویسندگان

  • Atul Thakur
  • Sagar Chowdhury
  • Petr Svec
  • Chenlu Wang
  • Wolfgang Losert
  • Satyandra K. Gupta
چکیده

In this paper, we introduce an indirect pushing based technique for automated micromanipulation of biological cells. Indirect pushing can be viewed as nonprehensile robotic manipulation. We propose a bead formation composed of two inert, optically-trapped glass beads, where one of the beads pushes the other freely diffusing intermediate bead to indirectly manipulate a given cell. Some cells can undergo significant changes in their behaviors as a result of direct exposure to a laser beam. Indirect pushing eliminates this problem by minimizing the exposure of the cell to the laser beam. We report an automated feedback planning algorithm that combines three motion maneuvers, namely, push, align, and backup for micromanipulation of cells. We have developed a simulation model of indirect pushing dynamics and also identified parameters of measurement noise using physical experiments. We present an optimization based approach for automated tuning of planner parameters to enhance its robustness. Finally, we have tested the developed planner using our optical tweezers physical setup and carried out a detailed analysis of the experimental results. The developed approach can be utilized in biological experiments for studying collective cell migration by accurately arranging the cells in arrays without exposing them to a laser beam. ∗All correspondence should be addressed to [email protected].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of dissertation: PLANNING FOR AUTOMATED OPTICAL MICROMANIPULATION OF BIOLOGICAL CELLS

Title of dissertation: PLANNING FOR AUTOMATED OPTICAL MICROMANIPULATION OF BIOLOGICAL CELLS Sagar Chowdhury, Doctor of Philosophy, 2013 Dissertation directed by: Professor Satyandra K. Gupta Department of Mechanical Engineering Optical tweezers (OT) can be viewed as a robot that uses a highly focused laser beam for precise manipulation of biological objects and dielectric beads at micro-scale. ...

متن کامل

Optical micromanipulation of active cells with minimal perturbations: direct and indirect pushing.

The challenge to wide application of optical tweezers in biological micromanipulation is the photodamage caused by high-intensity laser exposure to the manipulated living systems. While direct exposure to infrared lasers is less likely to kill cells, it can affect cell behavior and signaling. Pushing cells with optically trapped objects has been introduced as a less invasive alternative, but th...

متن کامل

Automated Indirect Transport of Biological Cells Using Planar Gripper Formations

Optical tweezers are used for manipulation of micron-sized dielectric beads and cells. Some biological cells are vulnerable to photo damage if subjected to laser based direct manipulation. In such cases, precise manipulation of these cells can be accomplished by using gripper formations made up of glass beads actuated by optical tweezers. Indirect manual manipulation of cells using optically he...

متن کامل

Precision Assembly of Complex Cellular Microenvironments using Holographic Optical Tweezers

The accurate study of cellular microenvironments is limited by the lack of technologies that can manipulate cells in 3D at a sufficiently small length scale. The ability to build and manipulate multicellular microscopic structures will facilitate a more detailed understanding of cellular function in fields such as developmental and stem cell biology. We present a holographic optical tweezers ba...

متن کامل

Optical micromanipulation of nanoparticles and cells inside living zebrafish

Regulation of biological processes is often based on physical interactions between cells and their microenvironment. To unravel how and where interactions occur, micromanipulation methods can be used that offer high-precision control over the duration, position and magnitude of interactions. However, lacking an in vivo system, micromanipulation has generally been done with cells in vitro, which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2014